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PostgreSQL developer @ 2ndQuadrant
PostgreSQL major contributor and committer
Based in Christchurch, New Zealand

Worked on:
● Improving query planner
● Partitioning improvements
● Partial aggregate infrastructure
● Parallel aggregates
● Generally making stuff go faster
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Agenda

● Big table problems
● How using a partitioned the table may help
● Short history of partitioning
● Introduction to partitioning
● Evolution of partitioning
● Application transparency
● Best practices
● The future of partitioning

Contains Benchm
ark Results!

Contains Benchm
ark Results!
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Problems with big tables

● Maximum table size is 32 TB (really 2^32-1 pages)

● Large indexes can become slow to access/update
● No control over data locality
● Slow operations, e.g vacuum.
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Introducing Partitioned Tables

● Declarative partitioning added in v10
● Table Inheritance (DIY partitioning) existed since 8.2
● Allows large tables to be divide horizontally
● Which partition is determined by value of partition key
● Indexes are partitioned too
● Partitioned tables do not store any data
● Data stored in partitions
● Partitions are just tables that are attached to a 

partitioned table. (Some restrictions apply)



https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Introducing Partitioned Tables

CREATE TABLE tname ( <columns> )
PARTITION BY LIST ( <col> );

CREATE TABLE tname ( <columns> )
PARTITION BY RANGE ( <col> , [col2]);

CREATE TABLE tname ( <columns> )
PARTITION BY HASH ( <col> , [col2]);
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Example Partitioned Table

CREATE TABLE people (
person_id BIGSERIAL,
firstname VARCHAR(64) NOT NULL,
state VARCHAR(3) NOT NULL

) PARTITION BY LIST (state);
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Creating Partitions (new table)

CREATE TABLE people_nsw PARTITION OF
people FOR VALUES IN ('NSW');

CREATE TABLE people_qld PARTITION OF
people FOR VALUES IN ('QLD');

CREATE TABLE people_nt_tas PARTITION OF
people FOR VALUES IN ('NT','TAS');
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Creating Partitions (existing table)

CREATE TABLE people_wa (
person_id BIGSERIAL,
firstname VARCHAR(64) NOT NULL,
state VARCHAR(3) NOT NULL

);
ALTER TABLE people ATTACH PARTITION 
people_wa FOR VALUES IN ('WA');
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Removing Partitions

-- Completely remove table
DROP TABLE people_wa;

● Or

-- Make partition a normal table again
ALTER TABLE people DETACH PARTITION 
people_wa;
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Partition Restrictions

● Table in ATTACH PARTITION must have the 
same columns/types

● No additional column(s) can exist
● Partitioning constraints cannot overlap
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Querying a Partitioned Table

# EXPLAIN (COSTS OFF) SELECT * FROM people;
           QUERY PLAN
---------------------------------
 Append
   ->  Seq Scan on people_nsw
   ->  Seq Scan on people_nt_tas
   ->  Seq Scan on people_qld
(4 rows)
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Partition Pruning

# EXPLAIN (COSTS OFF) SELECT * FROM people
WHERE state = 'NSW';

               QUERY PLAN
-----------------------------------------
 Seq Scan on people_nsw
   Filter: ((state)::text = 'NSW'::text)
(2 rows)

PG11 would have had an Append node above the Seq Scan
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Partition Pruning

# EXPLAIN (COSTS OFF) SELECT * FROM people
WHERE state IN('NSW','QLD');

                         QUERY PLAN
-------------------------------------------------------------
 Append
   ->  Seq Scan on people_nsw
         Filter: ((state)::text = ANY ('{NSW,QLD}'::text[]))
   ->  Seq Scan on people_qld
         Filter: ((state)::text = ANY ('{NSW,QLD}'::text[]))
(5 rows)
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Partition Pruning Performance

● Many changes done here since v10
● v10

○ checks each partition one by one (slow)

● v11
○ adds new pruning algorithm. Identifies matching partitions quickly
○ load partition metadata -> prune

● v12
○ prune -> load partition metadata
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Partition Pruning Performance
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INSERTing data

# INSERT INTO people (firstname, state) VALUES('Jane', 'NSW');
INSERT 0 1

# INSERT INTO people (firstname, state) VALUES('Scott', 'ACT');
ERROR:  no partition of relation "people" found for row
DETAIL:  Partition key of the failing row contains (state) = (ACT).

# INSERT INTO people_qld (firstname, state) VALUES('Sally', 'QLD');
INSERT 0 1

# INSERT INTO people_qld (firstname, state) VALUES('Mark', 'NSW');
ERROR:  new row for relation "people_qld" violates partition constraint
DETAIL:  Failing row contains (6, Mark, NSW).

# SELECT tableoid::regclass, * FROM people;
  tableoid  | person_id | firstname | state
------------+-----------+-----------+-------
 people_nsw |         4 | Jane      | NSW
 people_qld |         5 | Sally     | QLD
(2 rows)
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INSERT Performance (single row)
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Application Transparency (as of PG 12)

● Can I just use these? Will my application care?

○ PRIMARY KEY / UNIQUE constraints must contain partition key
○ Exclusion constraints not supported yet at partitioned table level. 

(must define at partition level)
○ UPDATEs to partition key column may result in serialization failures 

(application can retry on SQLCODE 40001)
○ COPY FREEZE not yet supported.
○ BEFORE ROW triggers cannot be defined on partitioned table (must 

define at partition level)
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Run-time Partition Pruning

● Prunes using values which are unknown during 
planning.

# EXPLAIN (COSTS OFF) SELECT * FROM measurement
WHERE logdate >= NOW();

               QUERY PLAN
----------------------------------------
 Append
   Subplans Removed: 2
   ->  Seq Scan on measurement_y2019m11
         Filter: (logdate >= now())
(4 rows)
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Run-time Partition Pruning Performance
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Partition-wise Aggregation

● Exploits the fact that rows can only be stored 
in a single partition

● Reduces the number of rows to make their way 
up the plan tree

● Is disabled by default!

# enable partition-wise aggregates!
enable_partitionwise_aggregate = on
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Feature v9.6 v10 v11 v12

Declarative partitioning

Auto Tuple Routing – INSERT

Auto Tuple Routing – UPDATE

Optimizer Partition Elimination [0] [0] [1]

Executor Partition Elimination

Foreign keys [2]

Primary Key / Unique Constraints

Default Partitions

ATTACH PARTITION does not block DML

AFTER EACH ROW TRIGGERS

Parallel Append

Foreign Partitions

Partition-wise Aggregates

Partition-wise Joins [3]

[0] Using constraint exclusion (slow) [1] exists but planning still slow when many partitions are pruned. [2] On partitioned table only. Can’t 
reference a partitioned table. [3] May be improved to work when partitioning bounds are not identical in v13 or beyond.
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Best Practises

● Choose your partition strategy and key wisely. Consider:
○ Quick removal of old data
○ Data locality
○ WHERE clauses

● Ensure you have control over the number of partitions 
which need to be created

● Test to make sure it fixes your performance problems
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Trip Hazards (as of v12)

● Large numbers of partitions can make some operations 
slow, particularly UPDATE/DELETE

● Locking overhead of quick to execute queries when many 
partitions are run-time pruned

● Memory  usage when too many tables are accessed from 
each backend.
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The future?

● More performance improvements!
○ Improve locking?
○ Make UPDATE/DELETE planning faster

● Add additional query planner smarts to take advantage of 
partitioning!
○ Improvements for time-series data
○ Take more advantage of partition order
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Questions?
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