
https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Table Partitioning in
PostgreSQL

PgDU Sydney 15th November 2019

David Rowley

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

PostgreSQL developer @ 2ndQuadrant
PostgreSQL major contributor and committer
Based in Christchurch, New Zealand

Worked on:
● Improving query planner
● Partitioning improvements
● Partial aggregate infrastructure
● Parallel aggregates
● Generally making stuff go faster

About me

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Agenda

● Big table problems
● How using a partitioned the table may help
● Short history of partitioning
● Introduction to partitioning
● Evolution of partitioning
● Application transparency
● Best practices
● The future of partitioning

Contains Benchm
ark Results!

Contains Benchm
ark Results!

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Problems with big tables

● Maximum table size is 32 TB (really 2^32-1 pages)

● Large indexes can become slow to access/update
● No control over data locality
● Slow operations, e.g vacuum.

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Problems with big tables

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Problems with big tables

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Introducing Partitioned Tables

● Declarative partitioning added in v10
● Table Inheritance (DIY partitioning) existed since 8.2
● Allows large tables to be divide horizontally
● Which partition is determined by value of partition key
● Indexes are partitioned too
● Partitioned tables do not store any data
● Data stored in partitions
● Partitions are just tables that are attached to a

partitioned table. (Some restrictions apply)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Introducing Partitioned Tables

CREATE TABLE tname (<columns>)
PARTITION BY LIST (<col>);

CREATE TABLE tname (<columns>)
PARTITION BY RANGE (<col> , [col2]);

CREATE TABLE tname (<columns>)
PARTITION BY HASH (<col> , [col2]);

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Example Partitioned Table

CREATE TABLE people (
person_id BIGSERIAL,
firstname VARCHAR(64) NOT NULL,
state VARCHAR(3) NOT NULL

) PARTITION BY LIST (state);

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Creating Partitions (new table)

CREATE TABLE people_nsw PARTITION OF
people FOR VALUES IN ('NSW');

CREATE TABLE people_qld PARTITION OF
people FOR VALUES IN ('QLD');

CREATE TABLE people_nt_tas PARTITION OF
people FOR VALUES IN ('NT','TAS');

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Creating Partitions (existing table)

CREATE TABLE people_wa (
person_id BIGSERIAL,
firstname VARCHAR(64) NOT NULL,
state VARCHAR(3) NOT NULL

);
ALTER TABLE people ATTACH PARTITION
people_wa FOR VALUES IN ('WA');

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Removing Partitions

-- Completely remove table
DROP TABLE people_wa;

● Or

-- Make partition a normal table again
ALTER TABLE people DETACH PARTITION
people_wa;

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Partition Restrictions

● Table in ATTACH PARTITION must have the
same columns/types

● No additional column(s) can exist
● Partitioning constraints cannot overlap

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Querying a Partitioned Table

EXPLAIN (COSTS OFF) SELECT * FROM people;
 QUERY PLAN

 Append
 -> Seq Scan on people_nsw
 -> Seq Scan on people_nt_tas
 -> Seq Scan on people_qld
(4 rows)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Partition Pruning

EXPLAIN (COSTS OFF) SELECT * FROM people
WHERE state = 'NSW';

 QUERY PLAN

 Seq Scan on people_nsw
 Filter: ((state)::text = 'NSW'::text)
(2 rows)

PG11 would have had an Append node above the Seq Scan

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Partition Pruning

EXPLAIN (COSTS OFF) SELECT * FROM people
WHERE state IN('NSW','QLD');

 QUERY PLAN

 Append
 -> Seq Scan on people_nsw
 Filter: ((state)::text = ANY ('{NSW,QLD}'::text[]))
 -> Seq Scan on people_qld
 Filter: ((state)::text = ANY ('{NSW,QLD}'::text[]))
(5 rows)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Partition Pruning Performance

● Many changes done here since v10
● v10

○ checks each partition one by one (slow)

● v11
○ adds new pruning algorithm. Identifies matching partitions quickly
○ load partition metadata -> prune

● v12
○ prune -> load partition metadata

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Partition Pruning Performance

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

INSERTing data

INSERT INTO people (firstname, state) VALUES('Jane', 'NSW');
INSERT 0 1

INSERT INTO people (firstname, state) VALUES('Scott', 'ACT');
ERROR: no partition of relation "people" found for row
DETAIL: Partition key of the failing row contains (state) = (ACT).

INSERT INTO people_qld (firstname, state) VALUES('Sally', 'QLD');
INSERT 0 1

INSERT INTO people_qld (firstname, state) VALUES('Mark', 'NSW');
ERROR: new row for relation "people_qld" violates partition constraint
DETAIL: Failing row contains (6, Mark, NSW).

SELECT tableoid::regclass, * FROM people;
 tableoid | person_id | firstname | state
------------+-----------+-----------+-------
 people_nsw | 4 | Jane | NSW
 people_qld | 5 | Sally | QLD
(2 rows)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

INSERT Performance (single row)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Application Transparency (as of PG 12)

● Can I just use these? Will my application care?

○ PRIMARY KEY / UNIQUE constraints must contain partition key
○ Exclusion constraints not supported yet at partitioned table level.

(must define at partition level)
○ UPDATEs to partition key column may result in serialization failures

(application can retry on SQLCODE 40001)
○ COPY FREEZE not yet supported.
○ BEFORE ROW triggers cannot be defined on partitioned table (must

define at partition level)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Run-time Partition Pruning

● Prunes using values which are unknown during
planning.

EXPLAIN (COSTS OFF) SELECT * FROM measurement
WHERE logdate >= NOW();

 QUERY PLAN
--
 Append
 Subplans Removed: 2
 -> Seq Scan on measurement_y2019m11
 Filter: (logdate >= now())
(4 rows)

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Run-time Partition Pruning Performance

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Partition-wise Aggregation

● Exploits the fact that rows can only be stored
in a single partition

● Reduces the number of rows to make their way
up the plan tree

● Is disabled by default!

enable partition-wise aggregates!
enable_partitionwise_aggregate = on

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Feature v9.6 v10 v11 v12

Declarative partitioning

Auto Tuple Routing – INSERT

Auto Tuple Routing – UPDATE

Optimizer Partition Elimination [0] [0] [1]

Executor Partition Elimination

Foreign keys [2]

Primary Key / Unique Constraints

Default Partitions

ATTACH PARTITION does not block DML

AFTER EACH ROW TRIGGERS

Parallel Append

Foreign Partitions

Partition-wise Aggregates

Partition-wise Joins [3]

[0] Using constraint exclusion (slow) [1] exists but planning still slow when many partitions are pruned. [2] On partitioned table only. Can’t
reference a partitioned table. [3] May be improved to work when partitioning bounds are not identical in v13 or beyond.

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Best Practises

● Choose your partition strategy and key wisely. Consider:
○ Quick removal of old data
○ Data locality
○ WHERE clauses

● Ensure you have control over the number of partitions
which need to be created

● Test to make sure it fixes your performance problems

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Trip Hazards (as of v12)

● Large numbers of partitions can make some operations
slow, particularly UPDATE/DELETE

● Locking overhead of quick to execute queries when many
partitions are run-time pruned

● Memory usage when too many tables are accessed from
each backend.

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

The future?

● More performance improvements!
○ Improve locking?
○ Make UPDATE/DELETE planning faster

● Add additional query planner smarts to take advantage of
partitioning!
○ Improvements for time-series data
○ Take more advantage of partition order

https://www.2ndQuadrant.com

PgDU Sydney
15th Nov 2019

Questions?

	David Rowley
	About me
	Agenda
	Big Table Problems
	Big Table Problems
	Big Table Problems
	Introducing Partitioned Tables
	Introducing Partitioned Tables
	Example Partitioned Table
	Creating Partitions (new table)
	Creating Partitions (existing table)
	Removing Partitions
	Restrictions
	Querying a Partitioned Table
	Partition Pruning
	Partition Pruning
	Partition Pruning Performance
	Partition Pruning Performance
	INSERTing data
	INSERT Performance (single row)
	Application Transparency (as of PG 12)
	Run-time Partition Pruning
	Run-time Partition Pruning Performance
	Partition-wise Aggregation
	Slide 35
	Best Practises
	Trip Hazards (as of PG12)
	The future?
	Questions?

